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Two-dimensional vortex dynamics in a ratchet washboard planar pinning potential in the presence of thermal
fluctuations is considered on the basis of a Fokker-Planck equation. Explicit expressions for two nonlinear
anisotropic voltages �longitudinal and transverse with respect to the current direction� are derived and ana-
lyzed. The physical origin of these odd �with respect to magnetic field or transport current direction reversal�
voltages is caused by the interplay between the even effect of vortex guiding and the ratchet asymmetry. Both
voltages are going to zero in the linear regimes of the vortex motion �i.e., in the thermally activated flux flow
�TAFF� and Ohmic flux flow �FF� regimes� and have a bumplike current or temperature dependence in the
vicinity of the highly nonlinear resistive transition from the TAFF to the FF.
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I. INTRODUCTION

Since last decade vortex ratchets, which exploit asymmet-
ric vortex dynamics, have been attracting considerable
attention.1–6 The common feature of superconducting ratchet
systems is their rectifying property: the application of the
alternating current to a superconductor patterned with a pe-
riodic asymmetric pinning potential can produce vortex mo-
tion whose direction is determined only by the asymmetry of
the pattern. Although considerable theoretical work exists,1

only few experiments have been realized. Recently a vortex
lattice ratchet effect has been investigated in Nb films sput-
tered on arrays of nanometric Ni triangles, which produce the
periodic asymmetric pinning potential.2 Similar effects were
also discussed for YBa2Cu3O7−� superconducting films with
antidots.4 Earlier it has been proposed in Ref. 5 how the
ratchet effect can be used to remove vortices from low-
temperature superconductors.

Unfortunately, a full temperature-dependent theoretical
description of the superconducting devices proposed in Refs.
2–5 is not available due to the complexity of the two-
dimensional periodic pinning potential in Refs. 2–5 used. In
particular, a theoretical explanation of the experimentally
available study of the vortex flow along the vortex channel-
ing directions in above-mentioned structures is a difficult
problem. Due to this reason we propose below to study ex-
perimental ratchet properties of superconductors on the basis
of a more simple ratchet device for which exists a full theo-
retical description �at least in the single-vortex approxima-
tion� of its two-dimensional vortex dynamics within the
framework of a Fokker-Planck approach. The first commu-
nication on this subject has been published in Ref. 6.

It is noticeable that such a device has already been ex-
ploited many years ago by Morrison and Rose in their ex-
periments on controlled asymmetric �as now we say
“ratchet“� surface pinning in the superconducting-alloy
films.7 Recent progress in the fabrication of submicrometric

structures with a periodic ratchet modulation of their thick-
ness by methods of electron-beam lithography8 or molecular-
beam epitaxy on facetted substrates9 allows us to prepare Nb
films with a similar well-controlled asymmetric washboard
pinning structure. Note also that the main feature of similar
structures is the existence of well-defined guiding of vortices
along the channels of the washboard pinning potential at
relatively low temperatures.

One of the first experimental observations of guided vor-
tex motion in the flux flow �FF� regime was made by Niessen
and Weijsenfeld still in 1969.10 They studied guided vortex
motion in the cold-rolled sheets of a Nb-Ta alloy by measur-
ing transverse �T� voltages of the pattern for different mag-
netic fields H, transport current densities J, temperatures T,
and different angles � between the rolling and current direc-
tions. The �H ,J ,T ,�� dependences of the cotangent of the
angle � between the average vortex velocity �v� and the j
direction were presented. For the discussion, a simple theo-
retical model was suggested, based on the assumption that
vortex pinning and guiding can be described in terms of an
isotropic pinning force plus a pinning force with a fixed di-
rection which was perpendicular to the rolling direction. The
experimentally observed dependence of the transverse and
longitudinal �L� voltages on the magnetic field in the flux
flow regime as a function of the angle � was in agreement
with this model. However, the dynamics of the vortex that is
moving transverse to the pinning channels has substantially
nonlinear behavior and cannot be entirely explained within
the flux flow approach.

The nonlinear guiding problem was exactly solved at first
only for washboard planar pinning potential �PPP� within the
framework of the two-dimensional stochastic model of an-
isotropic pinning, which takes into account the vortex and
the Hall viscosity coefficients and based on the Fokker-
Planck equation with a concrete form of the symmetric pin-
ning potential.11,12

Rather simple formulas were derived in Ref. 12 for the
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experimentally observable nonlinear even �+� and odd �−�
�with respect to the magnetic field reversal� longitudinal and
transverse magnetoresistivities ��,�

� �j , t ,� ,�� as functions of
the dimensionless transport current density j, dimensionless
temperature t, and relative volume fraction 0���1 occu-
pied by the parallel twin planes directed at an angle � with
respect to the current direction. The ��,�

� formulas were pre-
sented in Ref. 12 as linear combinations of the even and odd
parts of the function 	�j , t ,� ,��, which can be considered as
the probability of overcoming the potential barrier of the
pinning channel; this made it possible to give a simple physi-
cal treatment of the nonlinear regimes of vortex motion.

In addition to the appearance of a well-known relatively
large even transverse ��

+ resistivity,10 generated by the guid-
ing of vortices along the channels of the washboard PPP,
explicit expressions for two nonlinear anisotropic Hall resis-
tivities ��

− and ��
− were derived and analyzed. The physical

origin of these odd contributions caused by the subtle inter-
play between even effect of vortex guiding and the odd Hall
effect. Both additional resistivities were going to zero in the
linear regimes of the vortex motion �i.e., in the thermally
activated flux flow �TAFF� and Ohmic FF regimes and had a
bumplike current or temperature dependence in the vicinity
of highly nonlinear resistive transition from the TAFF to the
FF regimes�. As the odd resistivities arose due to the Hall
effect, their characteristic scale was proportional to the small
Hall constant as for ordinary odd Hall effect investigated
earlier in Ref. 11.

In contrast to the model which uses the uniaxial symmet-
ric PPP �Ref. 12� with the Hall effect, we consider below the
simpler modified model with asymmetric �ratchet� sawtooth
washboard pinning potential where the Hall effect is absent.
It will be shown the appearance of two steplike and two
bumplike singularities in the ��,�

+ and ��,�
− �Hall-like� resis-

tive responses in this model, even in the absence of the Hall
effect.

The objective of this paper is to present results of a
temperature-dependent theory for the calculation of the non-
linear magnetoresistivity tensor for asymmetric sawtooth
washboard pinning potential at arbitrary value of asymmetry
parameter 0�
�1 for the case of in-plane geometry of ex-
periment. This approach will give us the experimentally im-
portant theoretical model which demonstrates the ��,�

� mag-
netoresistivities for all corresponding values of the modeling
parameters and predicts an appearance of the nonlinear mag-
netoresistivity ��

− at some sets of parameters 
 �when the
Hall coefficient is zero� due to the asymmetry of the wash-
board PPP.

The organization of the paper is as follows. Section II
presents those general results in the stochastic model of an-
isotropic pinning which do not require specification of the
form of the pinning potential: the Fokker-Planck method in
the two-dimensional model of anisotropic pinning and the
nonlinear resistivity and conductivity tensors. In Sec. III A
we substitute a specific sawtooth form of the pinning poten-
tial into the general formulas of the preceding section. This
enables us to find the exact analytical solution of our prob-
lem and to derive and analyze theoretically formulas for the
resistive responses ��,�

� �j , t ,� ,��. Section III B is dedicated
to an analysis of the nonlinear guiding effect in the presence

of the PPP asymmetry, and Sec. III C discusses the behavior
of resistive responses due to the asymmetry of pinning po-
tential. Section III D considers a magnetoresistivity stability
with respect to small deviations of the angle � from its val-
ues adopted in the L and T geometries of experiment. Section
III E gives a short discussion of main features for the cases
of weak and strong asymmetries. Finally, Sec. IV presents
the obtained results and formulates the conclusions.

II. GENERAL RESULTS

A. Fokker-Plank method in the anisotropic pinning model

The Langevin equation for a vortex moving with velocity
v in a magnetic field B=nB �B�	B	, n=nz, z is the unit
vector in the z direction, and n= �1� has the form

�v = FL + Fp + Fth, �1�

where FL=n��0 /c�j
z is the Lorentz force ��0 is the mag-
netic flux quantum, c is the speed of light, and j is the trans-
port current density�, Fp=−�Up�x� is the anisotropic pinning
force �Up�x� is the uniaxial and asymmetric �Up�x��Up�
−x�� planar pinning potential�, and � is the electronic viscos-
ity constant. The thermal fluctuation force Fth is represented
by a Gaussian white noise, whose stochastic properties are
assigned by the relations

�Fth,i�t�� = 0, �Fth,i�t�Fth,j�t��� = 2T��ij��t − t�� , �2�

where T is the temperature in energy units. Employing rela-
tions �2�, we can reduce Eq. �1� to a system of Fokker-Plank
equations as follows:

�P

�t
= − � · S , �3�

�S = �FL + Fp�P − T � P , �4�

where P= P�r , t� is the probability density associated with
finding the vortex at the point r=r�x ,y� at the time t, and

S�r,t� � P�r,t�v�r,t� �5�

is the probability flux density of the vortex. Since the aniso-
tropic pinning potential is assumed to depend only on the x
coordinate and is assumed to be periodic �Up�x�=Up�x+a�,
where a is the period�, the pinning force is always directed
along the x axis �with unit anisotropy vector x; see Fig. 2� so
that it has no component along the y axis �Fpy =
−dUp�x� /dy=0�. Thus, Eq. �4� in the stationary case for the
functions P= P�x� and S= �Sx ,Sy�=Sx�x�x+Sy�x�y reduces to
the equations

�Sx = P�x�
FLx −
dUp

dx
� − T

dP

dx
, �6�

�Sy = P�x�FLy , �7�

where FLx=n��0 /c�j cos � and FLy =−n��0 /c�j sin � are
the x and y components of the Lorentz force, respectively,
and � is the angle between the direction of the transport
current density j and the y axis �see Figs. 1 and 2�. Invoking
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the condition of stationarity for Eq. �3� and eliminating Sy
from Eqs. �6� and �7� we obtain

T
dP

dx
+ 
dUp

dx
− FLx�P = − Sx� . �8�

From the mathematical point of view, Eq. �8� is the Fokker-
Planck equation of the one-dimensional vortex dynamics.
The solution of Eq. �8� for periodic boundary conditions
P�0�= P�a� and one-dimensional periodic pinning potential
of general form is

P�x� =
�Sx

T

f�a�f�x�
f�a� − f�0��x

x+a d�

f���
, �9�

where f���=exp
�FLx�−Up���� /T�.
Using the definition of the vortex mean velocity,

�v� = �
0

a

S�x�dx/�
0

a

P�x�dx , �10�

we obtain the expressions for the x and y components of the
vortex mean velocity,

��x� = �
0

a

Sx�x�dx/A = Sxa/A = FLx	�FLx�/� , �11�

��y� = �
0

a

Sy�x�dx/A = FLy/� , �12�

where A=�0
aP�x�dx and

1

	�FLx�
�

FLx

Ta�1 − exp�− FLxa/T���0

a

dx�
0

a

dx�


exp
−
FLxx

T
�exp
Up�x + x�� − Up�x��

T
� .

�13�

The dimensionless function 	�FLx� in the limit FLx→0 coin-
cides with the analogous quantity introduced in Ref. 11. It
has the physical meaning of the probability of the vortex
overcoming the potential barrier, the characteristic value of
which we denote as U0. This can be seen by considering the
limiting cases of high �T�U0� and low �T�U0� tempera-
tures. In the case of high temperatures we have 	�1, and
expression �13� corresponds to the FF regime. Indeed, in this
case the influence of pinning can be neglected. In the case of
low temperatures 	 is a function of the transport current. For
strong currents �FLxa�U0� the potential barrier disappears,
	�1, and the FF regime is realized. For weak currents
�FLxa�U0� we have 	�exp�−U0 /T�, which corresponds to
the TAFF regime. The transition from the TAFF regime to
the FF regime is associated with a lowering of the potential
barrier with growth of the current.

B. Nonlinear resistivity and conductivity tensors

The average electric field in the xy coordinate system in-
duced by the moving vortices is given by

E = �1/c�B 
 �v� = n�B/c��− ��y�x + ��x�y� . �14�

Taking Eqs. �11�, �12�, and �14� we obtain the dimensionless
magnetoresistivity tensor �̂ �having components measured in
units of the flux flow resistivity � f� for the nonlinear law E
= �̂�j�j,

�̂ = 
�xx �xy

�yx �yy
� = 
1 0

0 	�f�
� , �15�

where the dimensionless components of the electric field are
measured in units of E0=BU0 /ca�, and of the current, in
units of j0=cU0 /�0b, and

FIG. 1. Diagram of a superconductor in the presence of an ex-
ternal magnetic field B. A direct transport current with density j
flowing along the x� direction induces a Lorentz force FL that acts
along the y� direction. The superconductor is patterned with an
asymmetric uniaxial planar pinning potential �asymmetric PPP�
U�x ,y�=U�x��U�−x�, whose shape is shown in Fig. 3. The poten-
tial is periodic along the x axis and translationary invariant along
the y axis.

FIG. 2. System of coordinates xy �with the unit vectors x and y�
associated with the asymmetric PPP �the unit vector y points along
the pinning channels� and the system of coordinates x�y� associated
with the direction of the transport current density vector j, which
points along the x� axis; � is the angle between the asymmetric PPP
channels direction and the transport current density vector j and � is
the angle between the average velocity vector v of the vortices and
the transport current density j; FL is the Lorentz force.
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f = −
FLxb

U0
= mnjy = mnj cos � = pj cos � , �16�

where m= �1 determines the transport current reversal
�j= 	j	�, n= �1 determines the magnetic field direction rever-
sal �B=n	B	�, p�mn is the combination for simplification of
the current and magnetic field direction reversal, and � is the
angle between the current direction and asymmetric PPP
channels.

The conductivity tensor �̂ �the components of which are
measured in units of 1 /� f�, which is the inverse tensor to �̂,
has the form

�̂ = 
�xx �xy

�yx �yy
� = 
1 0

0 	−1�f�
� . �17�

From Eqs. �15� and �17� we see that off-diagonal compo-
nents of the �̂ and �̂ tensors are zero, and the nonlinear
components of the �̂ and �̂ tensors are functions of the ex-
ternal force value f through the external current density j, the
temperature T, and the angle �.

The experimentally measurable resistive responses refer
to a coordinate system tied to the current �see Fig. 2�. The
longitudinal and transverse �with respect to the current direc-
tion� components of the electric field, E� and E�, are related
to Ex and Ey by the simple expressions

E� = Ex sin � + Ey cos � ,

E� = − Ex cos � + Ey sin � . �18�

Then according to Eqs. �15� and �18�, the expressions for the
experimentally observable longitudinal and transverse �with
respect to the j direction� magnetoresistivities �� �E� / j and
���E� / j have the form

�� = sin2 � + 	�f�cos2 � ,

�� = �	�f� − 1�cos � sin � . �19�

We introduce the L and T geometries in which j �x and j�x,
respectively. From Eq. �19� it follows that in the L geometry
vortex motion takes place along the pinning channels �the
guiding effect�, and in the T geometry it is transverse to the
pinning channels direction �the slipping effect�. In the L ge-
ometry the critical current is equal to zero since the FF re-
gime is realized for guided vortex motion along pinning
channels direction. In the T geometry, i.e., for the vortex
motion transverse to the pinning channels, a pronounced
nonlinear regime is realized for T�U0, in the range jcr1� j
� jcr2, the onset of which corresponds �depending on the
sign of m� to the one of two crossover currents j= jcr1 or j
= jcr2; and for T�0 we have jcr1,2� jc1,2, where jc1,2 are two
critical currents at T=0 in opposite directions. It is evident
that the presence of different crossover currents for mutually
opposite directions along the vector x is a direct consequence
of an asymmetric pinning potential.

Let us consider a diagram of the dynamical states of the
vortex system in the �jx , jy� plane for T�U0 �Fig. 4�. For
arbitrary angle � the tip of the vector j can lie in two differ-
ent regions which are different in their physical meanings. If

jy � jcr1 or jy � jcr2 the guided vortex motion takes place �the
guiding region�. For jy � jcr1 or jy � jcr2 the guided motion
along the pinning channels is joined by motion transverse to
the pinning channels �the slipping region�. It is clear that if
we apply an alternating harmonic current jac such that an
amplitude of the current along the y axis satisfies to the re-
lation jcr1� jy

ac� jcr2, it will lead to a motion of vortices
along the x axis as they can overcome a pinning potential
only in one direction. It is the occurrence of the ratchet ef-
fect.

III. VORTEX PINNING ON ASYMMETRIC PPP
AND ANALYSIS OF NONLINEAR REGIMES

A. Pinning potential and �-function behavior

The nonlinear properties of the resistivity tensor �̂, as can
be seen from formula �15�, are completely determined by the

FIG. 3. Asymmetric sawtooth pinning potential Up�x�: a is the
potential period �width of the potential channels�, b is the x coordi-
nate of the minimum of the potential well, and U0 is the depth of
the potential well.

FIG. 4. Diagram of dynamic states of the vortex system in the
xy plane for T�U0; G is the region of motion of the vortices along
the pinning channels �the guiding effect� and GS is the region of
motion of the vortices along and transverse to the pinning channels
�the guiding and slipping effects together�; jcr1 and jcr2 are the
crossover currents for mutually opposite directions along the vector
y corresponding to a transition from region G to region GS when
the jy is increasing.
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behavior of the function 	, which has the physical sense of
the probability of a vortex overcoming the potential barriers
created by the channels of asymmetric pinning potential. In
turn, the function 	, according to formula �13�, depends on
the form of the pinning potential. Above we considered the
simplest case of the asymmetric PPP that has sawtoothlike
form �see Fig. 3�,

Up�x� = �− Fp1x , 0 � x � b

− Fp2�x − a� , b � x � a ,
� �20�

where Fp1=U0 /b and Fp2=U0 / �b−a� are the pinning forces
in the different directions of the x axis and U0 is the depth of
a potential well, a is the period of the asymmetric PPP �a
�b�, and 
=b /a is the parameter characterizing the asym-
metry of the pinning potential �0�
�1 and 
=1 /2 corre-
sponds to the symmetric well�.

Substituting the potential �20� into formula �13� for the
probability function 	 gives the following expressions:

	�f ,t,
� = �f�
 − 1� − 1�2�f
 − 1�2/�f�A + B�� ,

A = f�f
�
 − 1� + 1�2 + �1 − 
��2f
 − 1�2 + 
�f�
 − 1� − 1� ,

B = t
cosh��f
 − 1 − f/2�/t� − cosh�f/�2t���/sinh�f/�2t�� ,

�21�

where f =−FLxa /U0 is the dimensionless external force
which gives the ratio of this force to the average pinning
force U0 /a and t=T /U0 is the dimensionless temperature
which gives the ratio of the energy of the thermal fluctua-
tions of the vortices to the depth of the potential wells U0. In
our case the dimensionless external force f also coincides
�up to a sign� with the dimensionless transport current jy,
which is given by formula �16�. At function evaluation �21�
we assumed that the asymmetry parameter 
 changes from
zero value that corresponds to shift of the pinning potential
minimum to the left, up to unity value that corresponds to
shift of the potential minimum to the right and that naturally
leads to as much as possible asymmetry of the pinning po-
tential in the appropriate direction.

Let us consider now the dependence of the probability
function 	�f , t ,
� on each of the quantities f , t, and 
 for the

remaining quantities held fixed �denoted by the subscript
“0”�. The dependence 	�f , t�=	�f , t ,
0� �see Fig. 5� shows 	
as a function of the external force acting on a vortex at dif-
ferent temperatures and for constant asymmetry parameter
value. The influence of the external force f acting on the
vortices is that it lowers the height of the potential barrier for
vortices localized along the channels of the asymmetric PPP
and, consequently, increases the probability of escape from
them. Raising the temperature also increases the probability
that a vortex will escape from a potential well through an
increase in the energy of the thermal fluctuations of the vor-
tices. Thus, the pinning potential, leading as f , t→0 to local-
ization of vortices, can be suppressed both by an external
force and by an increase in the temperature. From Eq. �21�
follows that

lim
t→�

	�f ,t,
� = lim
f→�

	�f ,t,
� = 1. �22�

The function

	0�f ,
� = lim
t→0

	�f ,t,
�

is equal to

	0�f ,
�

= � 0,
1


 − 1
� f �

1




�f
 − f − 1��f
 − 1�
f�f
2 − f
 − 2
 + 1�

, 
 f �
1


 − 1
� � 
 f �

1



� ,�
�23�

and corresponds to the zero-temperature limit.
From Eqs. �23� and �16� it follows that the crossover

transport current and, respectively, crossover external force
�in the dimensionless units� in both directions are fcr1= jcr1
=1 / �
−1� and fcr2= jcr2=1 /
 �see also the diagram of dy-
namic states in Fig. 4�. If 0�
�1 /2, then 	jcr1	� 	jcr2	, and
for 1 /2�
�1 we have 	jcr1	� 	jcr2	. Let us note also that the
value 
=1 /3, which we use in some figures of this paper,
corresponds to the case when jcr1=2jcr2.

In the zero-temperature limit, for 	jy	� 	jcr1	 , 	jcr2	 the
vortices are trapped in the potential wells of the pinning
channels and they cannot move across pinning barriers,
while for 	jy	� 	jcr1	 , 	jcr2	 the potential barrier disappears
and the vortices begin to move in the one or both directions.
Indicated inequalities divide �f ,
� plane into two regions: the
first one is the full guiding region, where 	=0, whereas in
the second region 	�0 and vortices can move in the nonlin-
ear resistive regimes.

It is easy to understand the influence of the temperature
on the qualitative form of 	�jy ,
�. Specifically at low tem-
peratures �T�U0� a nonlinear transition takes place from the
TAFF regime of vortex motion perpendicular to the pinning
channels to the FF regime with growth of the external force,
wherein the function 	�jy ,
0� has a characteristic nonlinear
shape �see Fig. 5�. At high temperatures �T�U0� the FF
regime is realized over the entire range of variation of the
external current. At nonzero temperature jcr1 and jcr2 disap-
pear at relatively high temperature because increasing of the

FIG. 5. �Color online� The dependence 	�f , t� for fixed value of
the asymmetry parameter 
0=1 /3.
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temperature leads to smoothing of the function 	�jy ,
� which
in the limit t→� it simply degenerates in the plane 	�jy ,
�
=1 that corresponds to the free motion of the vortices.

In the limit f →0 we have

	0�t,
� =
exp�1/t�

t2�exp�1/t� − 1�2 . �24�

From Eq. �24� it follows that, if the temperature is nonzero,
the vortices can move at arbitrary small external force. This
is in agreement with the explanation at the end of Sec. II A.
Note that the value of 	0�t ,
� does not depend on the param-
eter of asymmetry of a pinning potential.

As follows from Eqs. �16�, �19�, and �21� the dynamics of
a vortex system depends substantially on the reversal of the
directions of the current flow and the magnetic field. Accord-
ing to Eq. �16�, the reversal of m and n signs equally cause
the reversal of the Lorentz force FL which changes the mag-
nitude of the 	�f , t ,
� function due to the inversion of f . In
order to consider only p-independent magnitudes of the ��

and �� resistivities in Eq. �19�, we should introduce the even
�+� and odd �−� magnetoresistivities with respect to the p
inversion (��p������p����−p�� /2). From this point of
view it follows that we should present the function 	�f� as a
sum of the even �+� and odd �−� parts with respect to inver-
sion of the moving force,

	�p� = 	+�p� + 	−�p� , �25�

	��p� =
	�pf ,t,
� � 	�− pf ,t,
�

2
, �26�

where 	� are even and odd parts of the 	 function, respec-
tively.

The most important features of the 	� functions follow
from Eqs. �22� and �26�. As can be shown, the dependence
	+�f , t� in the limiting cases is closely similar to the 	�f , t�.
Namely, the qualitative behavior and the limits of the com-
ponent 	+�f , t� as f , t→0,� coincide with the corresponding
limits of 	�f , t�. The 	− function has more sophisticated be-

havior, but if f →0,� or t→�, then 	− tends to zero.
Now let us consider the 	+�f ,
� behavior in more detail. It

is easy to see in Fig. 6 that 	+�f ,
� is always positive and
symmetric about f =0 and 
=1 /2 planes. Note also that at
comparatively low temperatures �t�1� the asymmetry pa-
rameter 
 influences on the shape of the 	+ function �see Fig.
6�. Namely, in Fig. 6 we see the specific bumplike behavior
of 	+�
� at f � fcr1 , fcr2 and in this connection it should be
pointed out that the magnitude of 	+�f� for large values of f
in the case of strong asymmetry �when 
 is near 0 or 1� does
not exceed 1/2.

Now we pass to a discussion of the 	−�f , t ,
� graphs. Let
us begin with considering the 	−�f ,
� and 	−�t ,
� functions
taken at constant t and f , respectively �see Figs. 7 and 9�.
The graph of 	−�f ,
� is antisymmetric about f =0, 	−=0, and

=1 /2 planes due to oddness of this function, whereas the
	−�t ,
� graph is antisymmetric about 
=1 /2 and 	−=0
planes.

As has been stated above, 	−�f , t� tends to zero in the
linear regimes and is nonzero in the region of nonlinearity of
	 �see Fig. 8�. It means that 	−�f , t� can be suppressed with

FIG. 6. �Color online� The dependence 	+�f ,
� for fixed value
of the temperature t0=0.05.

FIG. 7. �Color online� The dependence 	−�f ,
� for fixed value
of the temperature t0=0.05.

FIG. 8. �Color online� The dependence 	−�f , t� for fixed value of
the asymmetry parameter 
0=1 /3.
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increasing of the external motive force or temperature. When
the value of temperature grows, the function 	−�f , t� tends to
zero since the temperature fluctuations at t�1 in a supercon-
ductor suppress the influence of the pinning potential and the
vortex; thus, it can move freely in any direction �the FF
regime is realized�. At small temperature, when the contribu-
tion of pinning potential is comparable or more than the
contribution of temperature fluctuations �t�1�, the 	− behav-
ior is explained by interplay between the external motive
force f and asymmetry of the pinning potential �which
causes the appearance of the crossover currents jcr1,cr2�. If
f � fcr1 , fcr2 and the temperature value is close to zero, then
	−�f , t� also is close to zero because the vortex cannot move
across pinning channels in any direction. When fcr1� f
� fcr2 �or vice versa fcr2� f � fcr1 that depends on the value
of the asymmetry parameter 
�, then the TAFF regime is
realized and the curve 	−�f , t� accepts a bumplike form �see
Fig. 8�. In this case the ratchet effect occurs and vortices start
to move in a direction that associated with the minimal pin-
ning force. At strong external motive force, when f
� fcr1 , fcr2, the function 	−�f� is also vanishing because ex-
ternal current suppresses influence of the pinning potential
on the vortex �FF regime arises� as it follows from the gen-
eral properties of the 	�f� function, and the vortices can
freely move in any direction across the pinning channels.
The width of the peak of a bumplike curve is associated with
the value of asymmetry parameter 
 and also can be simply
presented as 2�fcr=2�	fcr1	− 	fcr2	�= ��	
	− 	
−1	� / ��
−1�
��.
It means that, when 
→0,1, the width of the peak will tend
to infinity and in Fig. 7 we see a change from the bumplike
to the steplike dependence of 	−�f�. The maximum of the
	−�f� function with respect to the external motive force f �see
Figs. 7 and 8� corresponds to the maximum pinning force for
both fcr1 and fcr2, respectively.

The appearance of 	− is a direct consequence of asymme-
try of the pinning potential. When the asymmetry parameter

 is not equal to 1/2, then the same absolute value of a
motive force applied in mutually opposite directions leads to
different values of the function 	 that leads to the occurrence
of an odd component 	−.

When the pinning potential is symmetric �
=1 /2�, the
function 	− is equal to zero �see Figs. 7 and 9�. Also, for 

=1 /2 we regain the results of Ref. 13,

	�f ,t,1/2� = �u2 − 1�2/
u2�u2 − 1�2ut�cosh�u/t�

− cosh�1/t��/sinh�u/t�� , �27�

where u= f /2.
Now we will obtain expressions from formulas �19� and

�26� for the experimentally observed longitudinal and trans-
verse resistivities �relative to the current direction� with the
asymmetric pinning potential taken into account. We sepa-
rate out their even and odd components relative to the cur-
rent direction,

��
+ = 	+ cos2 � + sin2 � , �28�

��
+ = �	+ − 1�sin�2��/2, �29�

��
− = 	− sin�2��/2, �30�

��
− = 	− cos2 � , �31�

where 	� are the above-defined even and odd components
relative to the current direction of the function 	�f , t ,
�. In
formulas �28� and �29� the nonlinear and linear terms sepa-
rate out in a natural way. The physical reason for the appear-
ance of linear terms is that in the model under consideration
for �=� /2 there is always a FF regime of vortex motion
along the pinning channels.

In Ref. 12 the influence of the Hall effect on the occur-
rence of 	− in the presence of symmetric pinning potential
has been discussed. It has been shown that if the Hall con-
stant is distinct from zero then 	− is distinct from zero too,
and vice versa. Now we see that the asymmetric PPP leads to
the occurrence of an odd component 	−�f� if we neglect the
Hall effect. In order to estimate the influence of the Hall
effect on the ��

− response in the presence of the asymmetric
pinning potential, and then to explain the way in which the
Hall and asymmetric odd transverse responses should be
separated experimentally, we considered this problem in the
Appendix.

B. Peculiarities of nonlinear guiding effect in presence
of the PPP asymmetry

As is well known,10 the specifics of anisotropic pinning
consist of the noncoincidence of the directions of the exter-
nal motive force acting on the vortex, and its velocity. In the
presence of uniaxial PPP the pinning force in a supercon-
ductor is anisotropic: it is directed in the transverse direction
with respect to the pinning channels and so is zero in the
longitudinal direction. The most specific manifestation of
such a pinning anisotropy are effects associated with the di-
rected motion of vortices along the washboard channels, the
so-called guided vortex motion or guiding, when the vortices
tend to move along the pinning channels even if the external
force acting on them is not aligned parallel to this channels.
Another important feature of pinning anisotropy is that the
longitudinal ��

+ and transverse ��
+ magnetoresistivities of the

FIG. 9. �Color online� The dependence 	−�t ,
� for fixed value of
the external motive force f0=0.7.

GUIDING OF VORTICES AND RATCHET EFFECT IN… PHYSICAL REVIEW B 80, 214526 �2009�

214526-7



sample depend on substantially not only the temperature, but
also on the angle � with which the vector j intersects the
pinning channels.

In order to describe the guided vortex motion along the
pinning channels in the absence of the PPP asymmetry, the
angle � between the transport current direction and vortex
velocity can be used �see Fig. 2� and it can be shown that
cot �=−��

+ /��
+.

From Fig. 2 and from Eqs. �14� and �19� follows the for-
mula

� = ��j,t,
,�� = arccot���/���

= arccot
�1 − 	�j cos �,t,
��/�tan �

+ 	�j cos �,t,
�cot ��� , �32�

which is used to describe the guiding effect in the presence
of asymmetry of the PPP. The guiding effect is expressed that
much more strongly, the larger is the difference in directions
of FL and v, i.e., the smaller is the angle �. If �=�, it means
that a full guided motion of vortices exists when all vortices
move parallel to the pinning channels and, on the contrary, if
�=� /2, the free vortex motion exists �in the FF regime�. We
see from Eq. �32� that due to the presence of the PPP asym-
metry the magnitude of the angle � depends on the sign of
m, i.e., on the inversion of the direction of the vector j. Only
at 
=1 /2 this dependence is absent. Although the guiding
effect conception is very important above all as illustration
of directed vortex motion we should underline that guiding
of the vortices is the necessary condition for the appearance
of the transversal ratchet effect, while the value of the effect
entirely depends on the distinction between probability of the
vortices overcoming over pinning potential barriers in oppo-
site directions as it follows from Sec. III. So the main pecu-
liarities of the guided vortex motion which appear due to
presence of the PPP asymmetry are the dependence of the
guiding angle � on the inversion of the transport current
direction and the appearance of the transversal ratchet effect.

C. Resistive responses due to asymmetry
of the pinning potential

In this section we consider peculiarities of the resistive
characteristics in the investigated model due to the asymme-
try of the pinning potential. Experimentally, two types of
measurements of the observed resistive characteristics are
possible in a prescribed geometry defined by a fixed value of
the angle �: current-voltage characteristic and resistive mea-
surements, which investigate the dependence of the observed
resistivities on the current density at a fixed temperature
��,�

� �j , t0� and on the temperature for fixed current density
��,�

� �j0 , t�. The form of these dependences is governed by a
geometrical factor—the angle � between the directions of
the current density vector j and the PPP channels. There are
two different forms of the dependence of ��,�

� on the angle �
�see formulas �28�–�31��. The first of these is the “tensor”
dependence, also present in the linear regimes �TAFF and FF
regimes�, which is external to the function 	. The second is
through the dependence of the function 	 on its argument f
= pjy = p	j	cos �, which in the region of the transition from

the TAFF to the FF regime is substantially nonlinear �see Eq.
�21��.

First recall that in the absence of an asymmetry of the
pinning potential �
=1 /2� there exist only even resistivities
��,�

+ in the magnetic field, whereas the odd resistivities ��,�
−

are zero �see formulas �28�–�31��. The presence of 
�1 /2
leads to the appearance of the odd component 	−, which has
a maximum in the region of the nonlinear transition from the
TAFF to the FF regime and is essentially equal to zero out-
side this transitional region �see Figs. 7 and 9�.

Let us analyze the resistive dependences ��,�
� �j� and

��,�
� �t� with allowance for the asymmetric pinning potential.

The nature of the behavior of the current and temperature
dependence of ��,�

� is completely determined by the behavior
of the dependences 	��j� and 	��t�. As follows from formu-
las �28�–�31�, the even resistivities ��,�

+ depend only on the
even function 	+ and, similarly, ��,�

− depend only on the odd
function 	−.

The limiting values of the qualitatively similar depen-
dences ��

+�jy� and ��
+�t� corresponding to the TAFF regime of

vortex motion transverse to the pinning channels are deter-
mined by guided vortex motion along the pinning channels
and grow with increasing magnitude of the angle � since in
this case the component of the Lorentz force along the pin-
ning channels increases. In the FF regime, as the pinning
viscosity becomes isotropic, the contribution to the depen-
dences ��

+�j� and ��
+�t� due to vortex motion transverse to the

PPP channels becomes substantial, and the limiting values of
these dependences are equal to unity �see Figs. 10 and 11�.

The main contribution to the even transverse resistivity
��

+ is proportional to the factor sin�2�� /2; therefore, the
angle most favorable for its observation is near �=� /4. The
current dependence ��

+ �j� and the temperature dependence
��

+ �t� have their maximum absolute values in the TAFF re-
gime of vortex motion transverse to the PPP channels �the
same value is approached if the angle is replaced with its
complement in the limit j→0 and t→0� and go to zero with
the onset of the FF regime as a consequence of isotropization
of the pinning viscosity. The resistivity ��

+ can serve as a
measure of the anisotropy of the pinning viscosity since it is
determined by the difference of the pinning viscosities trans-
verse to and along the pinning channels �see also Eqs. �28�
and �29��.

FIG. 10. �Color online� The dependence ��
+�j ,�� for fixed value

of the temperature t0=0.05 and asymmetry parameter 
0=1 /3.
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As can be seen from Figs. 6 and 11 the behavior of the
��,�

+ �j ,
� resistivities is closely equal to the behavior of the
	+�f ,
�. It also follows from Eqs. �28� and �29� that all that
have been told about the behavior of the 	+�f ,
� function can
be repeated here by analogy. Hence, the steplike appearance
of ��,�

+ �j� is a direct consequence the of the pinning potential
asymmetry. A unique distinction is the influence of the angle
� on the ��,�

+ �j ,
� resistivities by means of internal angular
dependence. The internal angular dependence reduces influ-
ence of the current on the 	+�j� function and causes increas-
ing of the even resistivities along the j axis when � in-
creases.

As was noted above, the odd longitudinal ��
− and trans-

verse ��
− magnetoresistivities arise thanks to the asymmetry

of the pinning potential, and therefore their characteristic
scale is proportional to 	− �see Eqs. �30� and �31��. There-
fore, their qualitative form �Figs. 12 and 13� is inherited
completely by the behavior of 	− as a function of the current
density, asymmetry parameter, and temperature.

A characteristic peak appears in the ��
−�j� dependences in

the region of nonlinearity of 	− as a function of the current
density and parameter of asymmetry while in the TAFF and
FF regimes of the vortex motion transverse to the pinning

channels they vanish �Figs. 12 and 13�. The temperature be-
havior of the resistivities ��

− and ��
− is similar to 	−�t� behav-

ior �see Figs. 8 and 9�. As the main contribution to the odd
transverse resistivity ��

− is proportional to the factor
sin�2�� /2, then the most favorable angle for its observation
is near �=� /4. It can be important for experiment that the
maximal value of the resistivity ��

� does not exceed 1/2, as it
follows from Eqs. �29� and �30�.

As has been stated above, the resistivity internally de-
pends on the angle � through f = pjy = pj cos �, and it follows
from this that the value of the transport current density, cor-
responding to maximum of the ��

− resistivity, can be ex-
pressed as

jmax = min�jcr1, jcr2�/cos � . �33�

If � tends to � /2, then jmax tends to infinity. This physically
means that the Lorentz force, which affects the vortices, is
parallel to the pinning channels and cannot drag the vortices
across the pinning channels.

It is worth noticing jcr1 and jcr2 are functions of the asym-
metry parameter 
 as it was proved in Sec. III A. This ex-
plains the fact that, if 
→0,1, ��,�

− tends to the steplike or to
the bumplike form. It happens because one of the pinning
forces tends to infinity.

D. Angular stability of the resistivities in L and T geometries

Let us consider the observed resistivities in the T and L
geometries, where the current is directed exactly parallel
��=0� or perpendicular ��=� /2� to the PPP channels. It
follows from formulas �28�–�31� that in these limiting cases
��

�=0, and we obtain for ��
+ and ��

−

��,T
+ = 	T

+, ��,T
− = 	T

− �� = 0, T geometry� , �34�

��,L
+ = 1, ��,L

− = 0 �� = �/2, L geometry� , �35�

where longitudinal even ��,T
+ and odd ��,T

− resistivities are due
to vortex motion transverse to the PPP channels and are de-
scribed by the functions 	T

+ =	+�j , t ,
� and 	T
− =	−�j , t ,
�, re-

spectively. In the limit j , t→� we have ��,T
+ =1 and ��,T

− =0.

FIG. 11. �Color online� The dependence ��
+�j ,
� for fixed value

of the temperature t0=0.05 and angle �0=0.

FIG. 12. �Color online� The dependence ��
−�j ,�� for fixed value

of the temperature t0=0.05 and asymmetry parameter 
0=1 /3.

FIG. 13. �Color online� The dependence ��
−�j ,
� for fixed value

of the temperature t0=0.05 and angle �0=0.
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The resistivity ��,L
+ in the L geometry is equal to unity due to

guided vortex motion along the PPP channels, for which pin-
ning is absent. Formulas �34� express simple relations be-
tween the observable resistivities ��,T

+ and ��,T
− in the T geom-

etry and the form of the functions 	T
� can be reconstructed

from their measurements.
Therefore, it makes sense to consider the question of the

stability of the measurements in these geometries since the
preparation of the samples can lead to small deviations ��
from the values �=0, � /2. Here, it should also be borne in
mind that besides the resistivities ��

+ and ��
− assigned by for-

mulas �28� and �31�, in the presence of an angle deviation
��, the resistivities ��

+ and ��
− , not present in the L and T

geometries, also appear. The expansions of ��,�
� in � about

�=0 �in the T geometry� and in ��=� /2−� about �
=� /2 �in the L geometry� out to the first nonvanishing terms
have the following form:

��,T
− = 	T

−�j�� + o��3� , �36�

��,T
− = 	T

−�j� − 
1

2

�	T
−�j�
� j

j + 	T
−�j���2 + o��3� , �37�

��,T
+ = �	T

+�j� − 1�� + o��3� , �38�

��,T
+ = 	T

+�j� + 
1 −
1

2

�	T
+�j�
� j

j − 	T
+�j���2 + o��3� , �39�

��,L
− = − � �	−�j�

� j
�

j=0
j����3 + o„����4

… , �40�

��,L
− = � �	−�j�

� j
�

j=0
j����3 + o„����4

… , �41�

��,L
+ = �	+�0� − 1����� + o„����2

… , �42�

��,L
+ = 1 + �	+�0� − 1�����2 + o„����3

… . �43�

Below we will use simple physical arguments in order to
estimate a value and to explain all main features of resistiv-
ities �36�–�43�. The main cause of the presented behavior of
the resistivities in the L geometry is extremely small inner
dependence �f � j��� of the 	� functions from the transport
current density. Besides, it is easy to see that resistivities
��,L

− and ��,L
− are close to zero for t�1 and j�1. This hap-

pens because the derivative of 	− is nonzero only in the
vicinity of transition from the full guiding regime to the
TAFF regime and from the TAFF to the FF regime. The
appropriate derivatives and resistivities increase with the
temperature and the current density growth until the FF re-
gime occurs. On the other hand, the resistivity ��,L

+ in the L
geometry varies linearly for small deviations of � and does
not depend on the current density. In the same way ��,L

+ does
not depend on the small deviation of � and on the current
density �see Figs. 10 and 12�.

In the T geometry the inner dependence of the 	� from
the current density is strong �f � j�. The resistivities ��,T

+ and
��,T

− depend only on 	+ and 	− functions and have a weak

angular dependence accordingly. The resistivities ��,T
− and

��,T
+ are proportional to the � deviation. Similarly to forego-

ing we can conclude that the resistivity ��,T
� will be more

unstable in comparison with ��,T
� for a small deviation of the

angle � from the T geometry �see Figs. 10 and 12�.
The relative deviation of the resistivity for a small devia-

tion from the T and L geometries for ��
+ is on the order of

���,T
+ /��,T

+ ��2 /	�j , t� in the T geometry and ���,L
+ /��,L

+

��� in the L geometry. Thus, ��,T
+ is the most unstable in the

TAFF regime of vortex motion transverse to the pinning
channels, where 	�j , t��1. The physical reason for this be-
havior is the rapid variation of the angle � from �=0 in the
T geometry, where the average vortex velocity vy =0, to the
angle corresponding to the guiding regime with vy �vx.

The behavior of the resistivities in the L geometry is
physically clear from the fact that for ��� /2 the angle �
varies hardly at all, i.e., the direction of the velocity vector v
varies only slightly �in contrast to the case of the T geom-
etry� and thermally activated transitions of the vortices
through pinning potential barriers play a minor role here.

As was stated above, in an actual experiment small devia-
tions of the angle � from the values �=0, � /2 correspond-
ing to the L and T geometries are always present. Utilizing
experimental measurements of ��,�

� , these deviations can be
found using the following scheme. First, neglecting small
quadratic contributions in � to the resistivities ��,T

− and ��,T
+

�in the region where they are stable�, it is possible to solve
the inverse problem using formulas �37� and �39�, i.e., to
reconstruct the function 	. Knowing this, from the formulas
for the resistivity ��,L

+ , which vanish in the L geometry and
are linear for small deviations �, it is possible to find the
corresponding value of � deviations. The self-consistency of
this scheme is checked by calculating the quadratic correc-
tions in � and ��, which should be small relative to the main
contribution in the T and L geometries.

E. Weak and strong asymmetries

The definition of weak and strong asymmetries of the pin-
ning potential may be stated as follows. If fp1� fp2 then this
is a weak asymmetry case, and if fp1� fp2 �or vice versa
fp2� fp1� this corresponds to a strong asymmetry case. The
analysis of both limiting cases enables us to compare them
and also will lead to some simplifications of the calculations.

Let us discuss first the case when asymmetry of the pin-
ning potential is very small, i.e.,


 = 1/2 + z , �44�

where z→0 is the small deviation of the asymmetry param-
eter from the symmetric case. Substituting Eq. �44� into Eq.
�21� we can expand 	�f , t ,
� in a Taylor series about small
deviation z up to the second-order terms. A convenient result
can be presented in the following form:

	 � 	̃ = 	̃+ + 	̃−, �45�

where

	̃+ = �f2 − 4�2/�f2�f2 − 4� − G� �46�

corresponds to the even component of the 	̃ function expan-
sion into a Taylor series, whereas
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	̃− = Wz �47�

corresponds to the odd component of 	̃,

G = 16ft
cosh�f/�2t�� − cosh�1/t��/sinh�f/�2t�� ,

and

W = 16�4 − f2�„G + �4 − f2�
f sinh�1/t�/sinh�f/�2t��

+ 2�/�f�4 − f2� + G�2
… .

The insensitivity of the 	+ function to the small deviation
of the 
 parameter from 1/2 is the one we could see in Fig. 6,
where the 	+�
� dependence has a maximum at 
=1 /2. As a
consequence, the resistivities ��,�

+ have similar features in
this case �see Figs. 6 and 11�. For the 	−�
� and ��,�

− �
�
dependences, 
=1 /2 is an inflection point �see Figs. 7 and
13�. The 	−�
� dependence has a maximum in the TAFF
regime �see Figs. 7 and 8�. This is in a good agreement with
the behavior of the W�f , t� dependence, namely, W=0 if f
→0 and if t→�. It follows from this that W�f� also has a
maximum in the TAFF regime. The origin of it was dis-
cussed in more detail in Sec. III A. Note also that since 	+

�	− the odd resistivities will be substantially less than even
resistivities in this case.

Notice now that the 	̃+ function in Eq. �46� is the even
function of the external motive force f and coincides with the
similar expression given by Eq. �27�, which was pointed out
earlier in Ref. 13. It is easy also to prove that 	̃− in Eq. �47�
is odd with respect to f and z, respectively.

From Eqs. �30�, �31�, and �47� we can calculate an expres-
sion for the asymmetry parameter 
 as follows:


 = 1/2 + ��,T
− /W . �48�

Note that Eq. �48� can be used for calculating the value of 

from the experimental data in the limit �→0 and 
�1 /2.
The conditions for the most favorable observations of the ��,T

−

dependences were discussed in detail in Sec. III C.
In the opposite case, when a pinning force in one direc-

tion is considerably larger than a pinning force in another
direction, the strong asymmetry arises. Let us consider the
case where 
 is the small deviation of the asymmetry param-
eter in the strong asymmetry case �when fcr1=−1 and fcr2
=+��. Similarly to the weak asymmetry case, we expand
	�f , t ,
� in a Taylor series about a small deviation 
 up to the
second-order terms,

	�f ,t,
� = R0�f ,t� + R1�f ,t�
 , �49�

where

R0 = �f + 1�2/�fX� , �50�

R1 = C/X2, �51�

with

X = 1 + f + 2t sinh�1/�2t��sinh��1 + f�/�2t��/sinh�f/�2t�� ,

C = �4f2 + 5f + 2�/f + ��2f2
t cosh�f/�2t�� − t cosh��f + 2�/2t�

+ cosh�1/�2t��cosh��f + 1�/�2t��� + sinh��2 + f�/�2t��


�1 + 2f�� − 4t sinh�1/�2t��sinh��f + 1�/�2t��


�3f + 2��/sinh�f/�2t�� .

The R0 and R1 dependences are neither even nor odd
functions of f . It follows from this that 	+ and 	− functions
depend on the small deviation 
 of the asymmetry parameter
and it is possible to present as 	+=R0

++R1
+
 and 	−=R0

−

+R1
−
, where R0,1

� are the even and odd parts of the R1,2
functions. This fact can help us to extract the 
 parameter
from the experimental data as


 = ���,T
+ − R0,T

+ �/R1,T
+ . �52�

Note that Eq. �52� can be used for calculating the value of 

from the experimental data in the limit �→0 and 
�0 �in
the case 
�1 it is possible to replace 
 with 1 and f with −f
in formulas �49�–�52��.

As is well known,14 a difficulty arises in the experimental
measurements of the odd resistivity responses since for the
cancellation of parasitic thermoelectric voltages the proce-
dure of the “current averaging” is frequently used in the ex-
periments. It leads to the disappearance of the odd resistivi-
ties, and we cannot use Eq. �48� for the determination of 

from the experimental measurements. On the other hand, Eq.
�52� gives us a possibility to calculate the asymmetry param-
eter 
 only from the even resistivities, which usually can be
measured in the experiments with the strong asymmetry pin-
ning potential. But as it follows from Eqs. �49�–�51� and
from Fig. 10, 
 increasing leads to a larger external current in
the experiments for decreasing of the calculation errors.

As has been stated above, the 	+�j� dependence has a
steplike shape and the 	−�j� dependence has a bell-shaped
appearance if 
�1 /2. From Eq. �44� and from Sec. III A it
follows that in the weak asymmetry case the distinction be-
tween steps of the 	+�j� dependence and the width of the
bump of the 	−�j� dependence is equal to �j�8z. The center
of the bump position in the first approximation does not de-
pend on z, i.e., jmax�2. Similarly, in the strong asymmetry
case the distinction between 	+�j� steps and the 	−�j� bump
width is equal to �j�1 /z and the bump position also de-
pends on z as jmax�1 /z. These features of the 	� functions
lead to the same peculiarities in the resistive responses as it
follows from Eqs. �28�–�31�.

In summary, we can conclude that in the weak asymmetry
case the ��,�

+ resistivities practically do not depend on a small
deviation of the asymmetry parameter and tend to their maxi-
mum. The absolute values of the ��,�

− resistivities are propor-
tional to a small deviation of the asymmetry parameter that is
very small. On the other hand, in the strong asymmetry case,
the absolute value of the even resistivities tends to a mini-
mum; the absolute value of the odd resistivities tends to a
maximum and both do not depend on z at the transport cur-
rent density, which is less than 1 /z �see Figs. 6 and 7�. For
this reason it is clear that accurate experimental dc measure-
ments at continuous current may be difficult to perform be-
cause in the small asymmetry case the ratchet effect can be
suppressed by parasite thermoelectric voltages whereas in a
strong asymmetry case the ratchet effect can be noticeable
only at strong external transport current that can lead to the
thermal smoothing of the observed resistivities.
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IV. CONCLUSION

In this work we have proposed exactly solvable two-
dimensional model structure for the study of the ratchet ef-
fect in superconducting film in the presence of the asymmet-
ric planar pinning potential, which was studied first by
experiment in Ref. 7. We have theoretically examined the
strongly nonlinear resistive behavior of the two-dimensional
vortex system of a superconductor as a function of the trans-
port current density j, the temperature t, and the angle �
between the directions of the current and the PPP channels.
The nonlinear �in j� resistive behavior of the anisotropic vor-
tex ensemble is caused by the presence of anisotropic pin-
ning with asymmetry of the PPP. It is physically obvious that
such a pinning at low enough temperatures leads to aniso-
tropy of the vortex dynamics since it is much easier for vor-
tices to move along the pinning channels �the guiding effect
in the FF regime, which is linear in the current� than in the
perpendicular direction, where it is necessary for them to
overcome the pinning potential barriers of the PPP. If under
variation of one of the “external” parameters j, t, and � the
intensity of manifestation of the indicated nonlinearity is
weakened, then this weakening will lead to an “effective
isotropization” of the vortex dynamics, i.e., to a convergence
�and in the limit of the absence of nonlinearity, to coinci-
dence� of the directions of the mean velocity vector of the
vortices and the Lorentz force.

It is physically clear that the current, temperature, and
angle � have qualitatively different effects on the weakening
of the pinning and the corresponding transition from aniso-
tropic vortex dynamics to isotropic. With the growth of j the
Lorentz force FL grows and the height of the potential bar-
riers decreases, so for j� jcr1 , jcr2 �where jcr1 , jcr2 are the
crossover currents of the indicated transitions, whose width
grows with the growth of t� these barriers essentially disap-
pear. The quantities jcr1 , jcr2 depend on � by virtue of the
fact that the probability of overcoming the barrier is gov-
erned not by the magnitude of the force FL, but only by its
transverse component FL cos �, so that jcr1,2���
= jcr1,2�0� /cos � grows with the growth of �. Since an in-
crease in the temperature t always increases the probability
of overcoming the pinning barrier, the transition to isotro-
pization of the vortex dynamics is that much steeper in t, the
smaller is the pinning barrier.

In order to analyze theoretically the above-described
physical picture of a nonlinear anisotropic resistive response,
Secs. II A and III employed a comparatively simple, but at
the same time quite realistic, planar model of stochastic pin-
ning. It allows one to reduce the calculations to the evalua-
tion of analytical formulas �28�–�31�, which have a simple
physical interpretation. A distinguishing feature of this model
is the possibility, within the framework of a unified ap-
proach, to describe consistently the nonlinear transition from
the anisotropic dynamics of a vortex system �for currents j
� jcr1,2��� at relatively low temperatures� to isotropic behav-
ior �for currents j� jcr1,2��� at relatively high temperatures�.
In the model under consideration this approach corresponds
�for t�0� to a substantially nonlinear crossover from the
linear low-temperature TAFF regime to the Ohmic FF re-
gime of the vortex motion.

Proceeding now to a brief description of the main theo-
retical results, we note here that an analytical representation
of the nonlinear resistive response of the investigated system
in terms only of elementary functions was possible thanks to
the use of a simple but physically realistic model of aniso-
tropic pinning with asymmetric sawtooth PPP �see Sec. III
and Fig. 3�. The exact solution obtained made it possible to
consistently analyze not only the qualitatively clear dynam-
ics of the nonlinear guiding effect, but also the nontrivial
question of the interaction of guided vortex motion along
PPP channels and the ratchet effect. The most important re-
sult in our opinion is the conclusion that the appearance of
��,�

− magnetoresistivities does not require �as it was in Ref.
12� the Hall effect �see Sec. III�. The nonlinear formulas �30�
and �31� in agreement with physical intuition �now already
nonlinear� clearly demonstrate that the most natural and
“sufficient” reason for the relatively large ��,�

− effects is the
asymmetry of the pinning wells. At comparatively low tem-
peratures and weak currents it leads to the realization of a
quite intense �over a wide interval of angles around �
=� /4� guided vortex motion along the pinning channels in
the TAFF regime, i.e., to the appearance of ��

+ effects, and at
currents j� jcr1,2���, to the appearance of characteristic
maxima in the curves of the odd components of the resistiv-
ities ��,�

− �see Sec. III C and Figs. 12 and 13�.
An essential result of the present work is also contained in

formulas �30� and �31�. It is a quantitative description of the
interaction of the guiding and ratchet effects, which is valid
for all possible values of the asymmetry parameter 0�

�1. Formally, this interaction arises as a result of the fact
that in the case of anisotropic pinning on asymmetric PPP the
force of the overcoming the pinning well �see Eq. �20��,
which determines the probability of overcoming the potential
barrier �and therewith also determines the magnitude of the
component of the vortex velocity perpendicular to the pin-
ning channels�, is different in the opposite directions of the x
axis. Then arising of the odd resistivities defined by Eqs. �30�
and �31� appears only due to the ratchet form of the PPP and
to the change of their sign with the current or magnetic field
reversals �see Eq. �16��. Their origin follows from the emer-
gence of a certain equivalence of the xy directions for the
case, where a guiding of vortices along the channels of the
washboard PPP is realized at ��0, � /2. Note also that for
�=0 �T geometry of experiment� Eq. �31� gives in fact the
longitudinal ratchet signal measured in Ref. 2, whereas in L
geometry this signal is zero. At ��0, � /2 the transverse
ratchet response also appears �see Eq. �30��. The key point in
the physical interpretation of these formulas is our treatment
of the function 	�f , t ,
� as the probability of overcoming the
potential barriers of the PPP, from which follows an under-
standing of the evolution of the functions associated with it,
	� �see Sec. III�, as functions of the magnitude of the current
density j, temperature t, and angle �. If, as is usually the case
in experiment,7 the asymmetry of the pinning potential is
sufficiently small �
�1 /2�, then formulas �28�–�31� sim-
plify substantially since under these conditions 	−��1 /2
+z� , z→0 �see Sec. III E�.

In conclusion, it should be noted also that the ratchet ef-
fect opens up the possibility for a variety of experimental
studies of directed motion of vortices simply by measuring
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longitudinal and transverse voltages. Experimental control of
amplitude and frequency of the external force, damping, an-
isotropy parameters, and temperature can be easily provided.
In contradistinction with other vortex-based ratchet models,
the one presented here allows us to separate the Hall and
ratchet voltages, which are similar in their �j , t� behavior but
have different origins and magnitudes. Note also that the odd
ratchet voltages disappear during the procedure of the current
averaging frequently used in experiments14,15 for the cancel-
lation of parasitic thermoelectric voltages.

APPENDIX: COMPARISON OF RATCHET AND HALL
RESPONSES

In this appendix we discuss in short the inclusion of the
Hall effect into the problem under discussion. However, the
main goal of this part is to compare the properties of the odd
transverse resistivities ��

− , which originate both due to the
asymmetry of the washboard PPP and the presence of the
Hall effect.

It is easy to show12 that inclusion of the Hall effect
changes the motive force f = pj cos �, given by Eq. �16�, into
the following form:

f�m,n� = mj�n cos � + 
 sin �� , �A1�

where ���H /� and �H is the Hall constant. Then it can be
shown �see Ref. 12 and Eqs. �39� and �40� in Ref. 16� that

�� = m�� f/D���D − �2	�sin2 � + 	 cos2 �� ,

�� = m�� f/D���	 − D�1 − 	�sin � cos �� , �A2�

where D�1+�2, ��n�, 	=	�F�m ,n���	�m ,n�, and ��,�
���,��m ,n�. From Eqs. �A2� it follows that in the general
case �i.e., for U�x��U�−x� as it is supposed in the present
paper� it is possible to consider two sets of the � measure-
ments. The first one ��n� is measured at m=const and the

field inversion ��n�; in this case ��n�=�+�n�+�−�n�, where
���n�= ���+n ,m����−n ,m�� /2. In the second set ��m� is
measured at n=const and the current inversion ��m�; then
��m�=�+�m�+�−�m�, where ���m�= ���n ,+m����n ,
−m�� /2. Reasoning similarly, we define 	��n� and 	��m�. It
is important to stress that the procedure of current averaging
of the measured voltages leads to zero result for the �−�m�
resistivities and leaves unchanged the �+�m� and ��n� resis-
tivities.

Ignoring the analysis of Eqs. �A2� at arbitrary values of �,
below we consider for simplicity the case of the T geometry
��=0�. In this case it is easy to show the difference between
measurements of the odd transverse resistivities which fol-
low from the Hall effect �i.e., for ��,T

− �n�� or from an asym-
metry of the pinning potential �i.e., for ��,T

− �m��. In this way
it is follows from Eqs. �A2� that

��,T
+ �n� = m�� f/D�	T

+�n� ,

��,T
− �n� = �m�� f/D�	T

+�n� . �A3�

Then from Eqs. �A3� we obtain �=��,T
− �n� /��,T

+ �n�, i.e., we
can determine the dimensionless Hall parameter � from the
experimentally measured resistivities ��,T

− �n� and ��,T
+ �n�.

Current averaging does not change this conclusion. However,
different situation appears when ��,T

− �m� is calculated. From
Eqs. �A2� we obtain that ��,T

− �m�=�m�� f /D�	T
−�m� and the

current averaging of ��,T
− �m� gives zero. The � calculation

from the ��m� data leads to the specific result �
=��,T

− �m� /��,T
− �m�. In conclusion, carrying out the two sets of

experimental magnetoresistivity measurements ���m� and
��n�� gives us the possibility to separate �due to the different
	��m� and 	��n� functions in Eqs. �A2� and their different
behaviors under the procedure of the current averaging� the
Hall and asymmetric odd transverse and longitudinal magne-
toresistivity responses.
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